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ABSTRACT: Maize kernel density affects milling quality of the grain. Kernel density of bulk samples can be predicted by near-
infrared reflectance (NIR) spectroscopy, but no accurate method to measure individual kernel density has been reported. This
study demonstrates that individual kernel density and volume are accurately measured using X-ray microcomputed tomography
(μCT). Kernel density was significantly correlated with kernel volume, air space within the kernel, and protein content. Embryo
density and volume did not influence overall kernel density. Partial least-squares (PLS) regression of μCT traits with single-
kernel NIR spectra gave stable predictive models for kernel density (R2 = 0.78, SEP = 0.034 g/cm3) and volume (R2 = 0.86, SEP
= 2.88 cm3). Density and volume predictions were accurate for data collected over 10 months based on kernel weights calculated
from predicted density and volume (R2 = 0.83, SEP = 24.78 mg). Kernel density was significantly correlated with bulk test weight
(r = 0.80), suggesting that selection of dense kernels can translate to improved agronomic performance.
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■ INTRODUCTION

Kernel hardness is an important quality trait that affects several
stages of grain handling and processing.1,2 Harder kernels are
correlated with higher test weight and are more resistant to
breakage during harvest and transport. Softer kernels are more
susceptible tomechanical damage as well as pathogen attack. The
negative impact of soft kernels on agronomic performance is
exemplified by the maize high-lysine mutant, opaque2 (o2),
which increases the proportion of essential amino acids in the
kernel but confers a soft endosperm texture.3 Modified o2 known
as Quality Protein Maize (QPM) contains multiple quantitative
trait loci (QTL) that improve kernel hardness while maintaining
high lysine.4,5 Kernel hardness also affects the quantity and
quality of milled products. Hard, dense kernels produce greater
yield and higher quality of dry milled products such as flours and
grits.6 Softer kernels require less steeping time for wet milling
and are more amenable to separating seed storage proteins from
starch. The starch in soft kernels is also more efficiently digested
into simple sugars for applications in animal feeds, ethanol
production, and glucose/fructose production.
The quality of hardness is primarily determined by the physical

characteristics and chemical composition of the kernel endo-
sperm.1 The endosperm accounts for 80% of the volume of a
typical kernel and contains two types of starch accumulating
tissues.7 The harder vitreous endosperm is composed of densely
packed starch granules embedded within a complex protein
matrix, whereas the softer, floury endosperm contains larger,

loosely packed starch granules. Due to the differences in starch
packing between vitreous and floury endosperm, kernel density is
a proximate measure of hardness. Kernel density is highly
correlated with other measures of hardness including milling
characteristics and the vitreous/floury endosperm ratio.8−11

Kernel density can be measured in multiple ways. Test weight,
typically expressed in pounds per bushel, is a bulk density value
used in the assessment of corn lot quality. Finer scale measures of
kernel density are the floater test and pycnometer displacement
test. The floater test measures the percentage of floating kernels
in a salt solution with a known specific gravity.12,13 Pycnometers
measure the water or gas displaced by bulk samples of kernels,
and density is subsequently calculated by dividing the mass of the
sample by the volume displaced. Both floater and pycnometer
density measurements are low throughput, capable of processing
only a few samples per hour.
Near-Infrared (NIR) spectroscopy has been used to predict

bulk kernel hardness traits for more than 20 years.1,14 Light in the
NIR region of the electromagnetic spectrum (750−2500 nm) is
absorbed by overtone and combination vibrations of X−Hbonds
such as C−H, O−H, S−H, and N−H, which are abundant in
organic molecules.15 Therefore, NIR transmittance and
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reflectance profiles of biological materials are used to derive
information about the quality and quantity of organic material
within the sample. Predictive models are built using calibration
data sets created from analytical reference measurements and
associated NIR spectral profiles of diverse sets of samples. To
predict kernel density, Siska and Harbaugh16 developed a partial
least-squares (PLS) regression model that estimated density of a
bulk sample of kernels. Although bulk seed density measure-
ments are useful to analyze seed lots, finer scale density
assessments are needed for research and breeding, where
individual kernel density would enable analysis of segregating
populations and substantially reduce breeding cycles.
Recently, Armstrong et al.17 reported a single-seed NIR

calibration that discriminates low-, medium-, and high-density
kernels from hybrid plants. The PLS model used gas pycnometer
density measurements from 10 to12 g of kernels and averaged
NIR spectra from individual kernels within the bulk samples.
This composite method yielded a model that accounted for 76%
of the variance between actual and predicted bulk density
measurements. However, the density of individual kernels was
not measured, and the accuracy of single-kernel predictions
could not be tested. Prior single-kernel NIR calibrations for
starch, protein, and oil suggested an improved single-kernel
density model can be developed with analytical measurements of
single seeds associated with individual spectra.18,19

X-ray microcomputed tomography (μCT) is a feasible
approach to measure the density of individual kernels.20 μCT
utilizes X-ray attenuation from multiple radiograph “slices” of a
sample to reconstruct a three-dimensional (3D) representation
of the structure. X-ray absorption is directly related to density,
and attenuation of the X-ray signal can be converted into density
for any portion of the 3D structure. X-ray radiography has been
used in maize kernels to characterize size and shape, stress cracks,
moisture dynamics, pathogen infection, and density.21−24

Moreover, μCT measurements of wood mechanical properties
such as density and stiffness were accurately predicted by NIR

spectroscopy.25,26 The objectives of this study were to assess
μCT imaging of individual kernels as a method to determine
kernel density and volume as well as to develop single-kernel NIR
calibrations to predict kernel density and volume based on μCT
measurements.

■ MATERIALS AND METHODS
Kernel Samples. For μCT evaluation and PLS calibration, a set of

312 kernels was collected from 93 ears composed of 64 diverse
genotypes. The set overlaps with the genotypes used by Spielbauer et
al.18 Supplementary Table 1 in the Supporting Information gives the
specific maize lines, which encompass diverse inbred lines, grain-fill and
seed composition mutants, the Illinois long-term selections for oil and
protein, QPM, and four grain-fill mutants from the UniformMu
transposon-tagging population.27−30 Many genotypes were sampled
from ears produced at the University of Florida (Citra, FL, USA) as well
as in the USDA-ARSNorth Central Regional Plant Introduction Station
(Ames, IA, USA). Three to four kernels were selected from each ear
except in the case of the UniformMu mutants, for which nine kernels
were selected to represent the gradient of grain-fill defects in these lines.
For test weight correlations, 40 kernels were sampled from bulk harvests
of each of 30 hybrid lines grown in two 15.5 ft rows planted with 30
seeds per row at Iowa State University. Hybrids were selected from a
population of testcrosses based on variation in test weight and were
derived from LH51, LH82, DJ7, LH119, Oh43, and W64A germplasm.
Test weight values were collected at harvest and not normalized to
moisture content.

Analytical Methods. The oil content of single kernels was
measured with an NMR instrument (Minispec mq 20, Bruker BioSpin,
The Woodlands, TX, USA) using the manufacturer’s protocol for oil.
NMR instrument gain was adjusted by measuring a subset of kernels to
obtain approximately 75% of the maximum signal. The instrument was
then calibrated with a standard curve of four pure-oil reference masses
encompassing the signal range of the initial subsample of kernels.
Individual seed mass was then recorded, and seeds were placed in
sampling tubes and then preheated to 40 °C prior to NMR oil
measurement.

Kernel weights and NIR spectra were then collected from each kernel
using a semiautomated single-kernel NIR grain analyzer as described in
Spielbauer et al.18 except that the NIR spectrum integration time was

Figure 1. μCT analysis of an o2mutant and normal (N) kernel from a segregating ear: (A) 3D reconstruction; (B) single μCT section (gray scale shows
relative density, with white indicating the highest density); (C) same section as in panel B with a lower threshold attenuation cutoff to remove signal
from soft, starchy endosperm; (D) visible images of transverse hand sections through the same kernels showing embryo (e), vitreous (v), and starchy (s)
endosperm at approximately the same location as the μCT section in panels B and C.
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dropped from 40 to 20ms. Four weights and spectra were recorded from
each kernel and averaged.18 Outlier measurements among the four seed
weights for each kernel were identified with Grubb’s tests using the R
statistical package “outliers”.31 A total of 312 tests were performed and
12 weights were removed as outliers after Bonferroni correction for
multiple tests at a significance value of 0.05. No more than one weight
was removed for any individual kernel, leaving three to four weight
measurements for all 312 kernels in the study.
Kernel density and volume were determined using a ScanCo Medical

μCT 35 (SCANCOMedical AG, Brüttisellen, Switzerland). Each kernel
was set in an upright position in a foam block within a 20 mm μCT
sample tube and scanned in 20 μm steps and an intensity of 40 kV. The
resulting radiographs were analyzed using the manufacturer’s software
for contouring and 3D reconstruction (e.g., Figure 1A). Contours were
completed for each section using the semiautomated contouring
software with manual editing when needed. 3D reconstruction used a
lower threshold of 105 to discriminate air spaces from kernel material.
Standard deviation of repeatability for μCT measurements was
calculated by taking the square root of the mean square error of the
residuals from a one-way ANOVA of three independent measurements
of 20 randomly chosen kernels, where each kernel was used as a separate
group. Thirty-six kernels were randomly selected for hand-contouring of
the embryo to determine embryo density and volume. Standard
deviation of repeatability for embryo traits was calculated from three
independent measurements of 10 randomly chosen embryos.
After scanning, kernels were processed for protein analysis. Single

kernels were transferred to 2 mL microcentrifuge tubes and milled for
4−8 min in a MiniBeadbeater-96 (BioSpec Products, Bartlesville, OK,
USA) using 8mm steel ball bearings. Maize meal was dried at 50 °C for 3
days and lyophilized for 1 day to remove remaining moisture. Moisture
content was determined on a subsample of 95 kernels by weighing the
meal before and after drying with 95% of samples containing 9−11.5%
moisture prior to drying. Dry meal was stored under vacuum until ready
for analysis. Total N content was measured from 1mg of dry maize meal
by combustion analysis on a Carlo Erba NA1500 CNS elemental
analyzer (CE Instruments, Milan, Italy). Protein content was calculated
from the average of two to three independent measurements as N× 6.25
on a fresh weight basis assuming an average 10% moisture content.
PLS Regression. Each spectrum was mean-centered and trans-

formed with multiplicative scatter correction (MSC) and second-
derivative (2der) as indicated.32 Density and volume values were
centered and scaled. The kernels were split into calibration and
validation data sets by removing one-third of the kernels from each ear
for a total of 104 external validation samples. The remaining 208 kernels
were used for PLS regression, which was implemented in the R statistical
package “pls”.33 The PLS model was fit using the NIPALS algorithm
with cross-validation of eight randomly chosen segments. The optimum
number of factors was chosen on the basis of minimization of the
standard error of prediction (SEP) for the cross-validation set. Best fit
models were used to predict the external validation set.

■ RESULTS AND DISCUSSION
μCT Measures Single-Kernel Density and Volume. To

test the utility of the μCT scanner in measuring individual kernel
density, we scanned an o2mutant and a normal dent kernel of the
same inbred background. Figure 1A shows 3D reconstructions of
the kernels. Figure 1B,C shows individual slices from the kernel
scans. These kernels were then sectioned at approximately the
same plane and region of the kernel for optical imaging (Figure
1D). The o2 mutant alters endosperm protein composition,
resulting in loosely packed starch granules and soft, starchy
endosperm.3 The μCT scans distinguish tissues within the kernel
on the basis of density, which is represented on a grayscale with
dense material being white and air being black. The embryo has
the highest density, with the scutellum being slightly denser than
the embryo proper (Figure 1B). The difference in density
between vitreous (v) and starchy (s) endosperm can be seen in
the μCT scan as a darker endosperm in the o2 kernel and a darker

central portion in the normal endosperm (compare panels B and
D of Figure 1). Applying a low-density threshold retains signal
for the vitreous endosperm and embryo while removing the
signal for soft, starchy endosperm (Figure 1C). Applying this
same threshold to the o2 kernel removes most endosperm tissue,
illustrating the lower density of o2 endosperm as compared to the
normal kernel endosperm as well as the spatial distribution of
lower density material within the kernels. Total densities for
these kernels were 1.22 and 1.47 g/cm3 for the o2 and normal
kernels, respectively. The μCT kernel densities correlate with the
known reduction of kernel hardness in o2 mutants.4

Total density measurements include all volume inside the
contour lines drawn around the kernel and should be equivalent
to pycnometer kernel density. However, both pycnometer and
μCT total densities include air space inside the kernel and do not
report the density of the kernel material, per se. Void spaces can
account for as much as 13% of the volume of some hybrid
kernels,34 suggesting that total density may not be as informative
of kernel hardness as material density. Material density can be
measured from the μCT scans by setting a threshold to remove
air space from the density calculation. The material densities of
the o2 and normal kernels are 5% greater than total density at
1.290 and 1.543 g/cm3, respectively. The ability of μCT to
partition the kernel into biological material and air for
measurements of density and volume provides higher resolution
information about kernel characteristics than either pycnometer
or floater tests.

μCTMeasurement of DiverseMaize Germplasm.On the
basis of pycnometer or floater tests, typical kernel densities for
U.S. corn belt varieties ranged between 1.20 and 1.36 g/
cm3.13,16,17,35 We characterized a wider range of genotypic and
phenotypic diversity to determine the extent of variation in maize
kernel density. Table 1 shows descriptive statistics for μCT traits

measured for 312 kernels from 93 ears representing 64 genotypes
(see Supplemental Table 1 in the Supporting Information for the
sample list). The range of total density is 5.8-fold greater than
those in previous studies. However, the 0.13 g/cm3 difference
between mean total and material density is similar to the 0.17 g/
cm3 difference between “apparent” and “true” densities of hybrid
maize kernels as reported by Chang et al.34 The standard
deviation and range of material density is approximately half that
of total density, indicating the volume of internal air space has a
significant impact on kernel density. Variation in kernel volume
was greater than density with a 7-fold difference in total volume
and a 10-fold difference in material volume between the smallest
and largest kernels. Air space as a percent of total kernel volume
showed a large range with the largest air spaces observed in grain-
fill mutant genotypes. If only field corn lines are considered, the
mean void space dropped to 6.22% and ranged from 4.0% inW22

Table 1. μCT Kernel Measurements of Diverse Maize
Genotypes

kernel trait mean SDa CVb range SDRc

total density (g/cm3) 1.37 0.16 0.12 0.62−1.56 0.03
material density
(g/cm3)

1.50 0.08 0.05 1.18−1.65 0.03

total volume (mm3) 173.4 53.1 0.31 53.7−366.1 1.19
material volume (mm3) 158.0 53.7 0.34 36.1−348.4 1.09
% air space 10.04 10.45 1.04 3.18−58.09
aSD, standard deviation. bCV, coefficient of variation. cSDR, standard
deviation of repeatability.
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to 9.3% in Oh43 inbred kernels. The standard deviation of
repeatability (SDR) for all μCT measurements was well below
population standard deviations, showing that the μCT is capable
of precisely measuring densities even within the relatively narrow
range of material density phenotypes.
The accuracy of μCT density and volume measurements was

tested by calculating an estimated kernel weight from the product
of density and volume and comparing this value to measured
weights from the analytical microbalance of the NIR grain
analyzer. Figure 2 shows these μCT-calculated kernel weights are

closely correlated to measured kernel weight (R2 = 0.99). There
is a slight deviation to the linear regression slope with larger,
heavier kernels being overestimated in volume or density. This
bias could be due to error fromX-ray beam hardening in the μCT
or a systematic bias in the microbalance. However, the very close
correspondence between calculated and measured weight
demonstrates that μCT measurements of kernel density and
volume are both accurate and precise.
Starch biosynthetic mutants had the least dense kernels in

regard to total density. These low densities are due to large air
spaces present within the kernels. Figure 3A shows total (gray)
and material (black) densities for endosperm mutants affected in
kernel hardness ( f l2, o2), starch biosynthesis (bt1, sh2, bt2, su1),
or starch quality (ae1, wx1). All mutants analyzed were
introgressed into the W64A inbred. The bt1, sh2, and bt2
mutants have low total density, whereas their material density is
close to the W64A inbred. Figure 3B shows μCT slices from a
subset of these mutants to illustrate how mature kernels affecting
starch synthesis collapse during drying to leave large air spaces
between the seed and pericarp tissues.
To understand the relationships between density and grain fill,

we examined the correlations between seed weight and μCT
traits (Table 2). Because inclusion of the composition and seed
developmental mutant kernels had a strong influence on the
distribution of some traits, such as air space, Table 2 reports
correlations for the entire population as well as correlations for a
subset with the grain-fill mutants removed. Seed weight is most
highly correlated with kernel volume. Given the mathematical
relationship between mass, volume, and density (m = vd), the
correlations show that variation in kernel weight (m) in this
diverse sample of germplasm is primarily influenced by changes
in kernel volume (v) rather than density (d). Air space within the
kernel also had significant correlations to seed weight and to all

μCT traits for the entire population of diverse germplasm. When
the grain-fill mutants were removed from the sample population,
air space within the kernel was correlated to only total and
material density. This correlation is likely driven by the central
region of the starchy endosperm, which can fail to fill completely
in field corn varieties, leaving air and lower density endosperm.
The air space in the grain-fill mutants also drives a positive
correlation between total density and material volume. This
relationship becomes negative when the mutants are removed.
This change in sign suggests there is an optimum kernel volume
that maximizes density.
The density of the primary seed storage molecules is expected

to directly influence kernel density. To explore the relationships
between the μCT traits and kernel composition, we determined
protein and oil levels in the kernels. Again, grain-fill mutants
influenced the correlations observed (Table 2). Oil levels had a
weak positive correlation with material density when grain-fill
mutants were included in the analysis. Most of the kernel oil
accumulates in the embryo, and μCT scans show the embryo has
higher density than endosperm. Mutants that develop normal
embryos and reduced endosperm are expected to have a greater
proportion of embryo tissue, resulting in both higher relative oil
content and material density. The relationship between oil and
material density is lost when grain-fill mutants are excluded.
Instead, oil content is correlated to kernel volume, suggesting
that larger kernels trend toward lower oil levels and a greater
proportion of endosperm tissue.

Figure 2. Scatter plot and linear regression trend line of individual kernel
weight determined by a microbalance and calculated weight from μCT
density and volume measurements (total density × total volume).

Figure 3.Genetic effects on kernel density: (A) average total (gray) and
material (black) density of kernel composition mutants in the W64A
genetic background; (B) μCT sections of selected mutants; (C) average
total (gray) and material (black) density of maize inbred lines grouped
by origin. Error bars indicate standard deviation. The numbers of maize
genotypes (g) and kernels (n) used to calculate the mean are given.
Dotted lines show population means for total (gray) and material
(black) density.
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Protein content showed many significant relationships to
density and volume. Regardless of whether grain-fill mutants are
included, protein levels show a positive relationship with material
density and a negative relationship to kernel volume. This is
consistent with the role of seed storage proteins in developing
the hard, vitreous endosperm. Positive correlations between
kernel protein and density have been observed in prior studies
with a range of correlation coefficients and significance,17,36

suggesting that seed protein explains only part of the variance in
maize kernel density. Protein content is negatively correlated
with kernel volume, indicating an increase in relative amounts of
starch in larger kernels. Seed protein levels may be the cause for
the negative relationship between kernel volume and density in
field corn varieties.
Genotypic variance can also explain some differences in kernel

density. Grouping the kernel samples into tropical, stiff stock,
nonstiff stock, popcorn, and sweet corn shows varietal origin
differences in kernel density. Popcorn and sweet corn lines had
the highest density, whereas temperate stiff stock and nonstiff
stalk lines had densities lower than those of tropical lines (Figure
3C). These relative rankings were consistent when the genotypes
were propagated in either Florida or Iowa.
Relationship of Isolated Embryo with Whole-Kernel

μCT Traits. Kernel hardness is primarily determined by the
physical properties of the endosperm.1 If significant enough,
variation in embryo density or volume could affect whole-kernel
density and confound assessment of kernel hardness. The
relationships of embryo density and volume to overall kernel
traits were tested by hand-contouring embryos in μCT scans of a
subset of 36 kernels (Figure 4A). 3D reconstructions of the
embryos were not as smooth as whole kernels due to the
relatively low contrast in attenuation between endosperm,
embryo, and pericarp tissues (Figure 4B). However, the SDRs
for embryo density and volume were <1% of the population

means (Table 3), indicating hand-contouring is highly
reproducible. Embryo density was as high as 2.38 g/cm3, which

is 63% higher than the average whole-kernel density. Embryo
volume spanned a 3-fold range of variation and, on average,
accounted for 14% of the kernel volume. Air space in the
embryos was minimal, resulting in minor differences between
total and material measurements.
Table 4 shows that embryo density and volume do not affect

whole-kernel density measurements. Embryo density has a
significant negative correlation with percent oil. Corn oil has a
density of <1 g/cm3 and accumulates predominantly in the
embryo. Increasing the percentage of oil in the seed would be
expected to translate to increased oil in the embryo and a reduced

Table 2. Significant Pearson’s Correlation Coefficients (r) between Analytically Determined Kernel Traitsa

kernel trait weight density(t)b density(m) volume(t) volume(m) % air % oil % protein

weight − − 0.97 a 0.99 a − −0.25 c −
density(t) 0.46 a 0.89 a −0.36 a −0.27 b −0.75 a − 0.27 b
density(m) − 0.61 a −0.37 a −0.33 a −0.38 a − 0.33 a
volume(t) 0.95 a − − 0.99 a − −0.26 c −0.25 c
volume(m) 0.99 a 0.41 a − 0.97 a − −0.24 c −0.24 c
% air −0.51 a −0.94 a −0.30 a −0.26 a −0.49 a − −
% oil − − 0.21 c − − − −
% protein −0.24 b − 0.31 a −0.24 b −0.27 a 0.22 b 0.36 a

aCoefficients below the diagonal represent all maize lines from Table 1. Coefficients above the diagonal have composition and grain-fill mutants
removed. Bonferroni corrected p values of the correlation are indicated as follows: a, p < 0.0001; b, p < 0.001; and c, p < 0.01. Dashes indicate
nonsignificant coefficients. b(t)total; (m)material.

Figure 4. μCT analysis of a W22 embryo: (A) embryo contour (green)
of a single μCT section; (B) 3D reconstruction of the embryo.

Table 3. μCT Embryo Measurements of Diverse Maize
Genotypes

kernel trait mean SDa CVb range SDRc

total density (g/cm3) 1.67 0.15 0.10 1.33−1.99 0.007
material density
(g/cm3)

1.82 0.17 0.10 1.39−2.38 0.003

total volume (mm3) 25.11 7.16 0.30 13.98−42.64 0.33
material volume
(mm3)

23.24 6.4 0.29 12.43−39.20 0.30

aSD, standard deviation. bCV, coefficient of variation. cSDR, standard
deviation of repeatability.

Table 4. Pearson’s Correlation Coefficients (r) between
Embryo and Kernel Traits

embryo traits

trait density(t)a density(m) volume(t) volume(m)

Embryo
density(m) 0.88 ab

volume(t) −0.37 −0.28
volume(m) −0.34 −0.32 0.98 a

Kernel
weight 0.15 0.26 0.71 a 0.69 a
density(t) 0.34 0.19 0.01 0.06
density(m) 0.44 0.34 −0.09 −0.07
volume(t) 0.09 0.25 0.72 a 0.68 a
volume(m) 0.12 0.24 0.72 a 0.69 a
% air −0.11 0.14 0.25 0.16
% oil −0.61 a −0.75 a 0.18 0.24
% protein 0.12 0.06 0.02 0.03

a(t)total; (m)material ba, Bonferroni corrected p < 0.0001. All other
coefficients were nonsignificant.
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density. This association is illustrated in the Illinois long-term
low-oil selection. These kernels contain very low relative oil
levels, and the embryos have the highest material density
(Supporting Information Table S1). Embryo volume is
significantly, positively correlated with seed weight and volume.
This relationship helps explain why embryo volume and density
are not correlated to kernel density. Increases in dense embryo
tissue are balanced with a corresponding increase in lower
density endosperm tissue. A nonsignificant, positive correlation
existed between kernel and embryo density, which could be due
to the relatively low number of embryos sampled. If this weak
correlation is significant in larger samples, embryo density could
have a small impact on kernel density. Overall, these embryo data

suggest kernel density measurements primarily reflect endo-
sperm density and therefore should be useful measures of kernel
hardness.

Single-Kernel NIR Prediction of Density and Volume.
Although μCT scans provide accurate measurements of kernel
density and volume, a μCT scan takes about 1 h per kernel,
requires an experienced technician to guide contouring for 3D
reconstruction, and gives high doses of X-ray irradiation to the
kernel. These features of μCT are not ideal to screen or select for
altered kernel density. We collected NIR spectra of the 312
kernels prior to μCT scanning and used these spectra for PLS
prediction of the μCT traits. Table 5 shows descriptive statistics
of the calibration and external validation data sets as well as

Table 5. Statistics for μCT Traits and PLS Regression for Optimal Prediction Models

cross-validation (n = 208)a external validation (n = 104)b

kernel trait NIR pretreatmentc PLS factors mean SD R2 SEP mean SD R2 SEPa RPD

total density MC; MSC 8 1.37 0.17 0.80 0.085 1.37 0.17 0.82 0.067 2.53
material density MC; MSC 10 1.50 0.08 0.81 0.044 1.51 0.07 0.78 0.034 2.06
total volume MC 8 177.5 54.2 0.89 20.8 172.8 56.9 0.86 19.7 2.88
material volume MC 8 161.2 55.0 0.92 17.9 156.9 57.6 0.89 18.4 3.13
% oil MC; MSC 7 3.74 2.08 0.91 0.59 3.81 2.22 0.90 0.70 3.17
% protein MC; 2der, MSC 6 13.12 2.57 0.92 0.69 13.06 2.56 0.86 0.89 2.88

aSD, standard deviation; R2, coefficient of multiple determination; SEP, standard error of prediction. bRPD, SD/SEP. cMC, mean-centered; MSC,
multiplicative scatter correction.

Figure 5. Scatter plots of NIR-predicted and μCT measured kernel traits: (A) total kernel density; (B) total kernel volume; (C) material density
excluding air space; (D) material volume excluding air space. Each plot shows values for the external validation and a linear regression trend line. R2 and
SEP for the external validations are reported in Table 5.
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optimal model statistics for each trait. Optimum models had 8−
10 factors and accounted for 78−92% of the phenotypic variation
observed in the calibration population. The mean and standard
deviation for the calibration and external validation populations
were very similar, which ensured accurate error estimation by
external validation. When the models were used to predict the
external validation set of kernels, R2 and the standard error of the
prediction (SEP) for each trait were very similar to those of the
calibration set, indicating that the models were not overfit.
Plotting predicted versus observed values for the external
validation set showed that the regressions were not overly
biased and predicted extreme values of the traits well (Figure 5).
The standard deviation of the population was more than twice as
large as the standard error of the prediction (RPD > 2) for all
models, suggesting that, although NIR may not be a true proxy
for μCT-determined traits, single-kernel NIR is an effective tool
to screen individual kernels for density and volume.37 Figure 6A
shows total density predictions specifically for kernels from grain-
fill mutants showing R2 and SEP statistics nearly identical to
those of the overall model, indicating predictions are equally
accurate for mutant and normal kernels. We also completed oil
and protein PLS regressions with the analytical data collected
from the 312 kernels and found prediction statistics very similar
to those of Spielbauer et al. (Table 5).18

Stability of NIR prediction over time is not typically reported,
because collection of analytical measurements is expensive and
time-consuming. The NIR grain analyzer used in this study
collects a precise kernel weight with the NIR spectrum. We
reasoned the stability of density and volume predictions can be
inferred by comparing the measured kernel weight to the kernel
weight calculated from the product of predicted density and
predicted volume. Figure 6B shows a scatter plot of measured
versus calculated kernel weights for approximately 14000 kernels
from the Wisconsin maize diversity panel38 collected over the
course of 10 months. Similar to μCT kernel weight calculations
shown in Figure 2, there is a bias toward overpredicting the
weight of heavier kernels, suggesting NIR predictions are a stable
fit to μCT traits.

Comparison of Kernel Traits and NIR Latent Factors.
PLS regressions of NIR data select latent factors that are most
strongly correlated with the analytical trait of interest. The
spectral latent factors can be directly related to the trait of interest
or from correlated traits. It is not intuitively obvious how density
and volume are predicted. We completed correlation analysis
between the principal components (pc) of NIR spectra with
analytically determined μCT, kernel composition, and seed
weight traits (Table 6). Kernel density is most highly correlated
with pc2 of the NIR spectra. Kernel volume, weight, protein, and

Figure 6. Additional evaluation of NIR predictions of density and volume: (A) scatter plot of NIR-predicted and μCTmeasured total kernel density for
grain-fill mutants; (B) scatter plot of calculated kernel weight and measured weight for 14000 kernels from the Wisconsin Association Mapping Panel.
Weight was calculated from NIR-predicted density and volume (material density × material volume). Measured weight was determined by a
microbalance. Both plots show linear regression trend lines.

Table 6. Significant Pearson’s Correlation Coefficients (r) between Principal Components (pc) of NIR Spectra and Analytically
Determined Kernel Traitsa

pc density(t)b density(m) weight volume(t) volume(m) % oil % protein % starch

1 −0.43 a −0.35 a −0.79 a −0.73 a −0.76 a −c − −
2 0.64 a 0.54 a − − − − − −0.24 a
3 − 0.33 a −0.38 a −0.41 a −0.41 a 0.77 a 0.53 a −0.56 a
4 − − 0.24 c 0.27 b 0.27 b 0.49 a − −
5 − − − − − − 0.23 c −
6 − − − − − − −0.27 b −
7 − − − − − − 0.49 a −
8 − − − − − − −0.27 b −
9 − − − − − − 0.26 b −
10 − − − − − − 0.24 c −
11 − − − − − − − 0.25 a

aBonferroni corrected p values of the correlation are indicated as follows: a, p < 0.0001; b, p < 0.001; and c, p < 0.01. b(t)total; (m)material. cDashes
indicate nonsignificant coefficients. NIR and analytical data for % starch are from Spielbauer et al.18
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oil do not have a significant correlation with pc2, whereas starch
content has a weak correlation. The strong correlation between
density and pc2 along with the corresponding lack of correlation
of pc2 to other traits suggests density directly influences NIR
spectra in a manner independent of the other measured traits.
This correlation also provides a biological explanation for the
distinct spectra of kernel composition mutants when compared
to their normal siblings.18 Mutants that influence kernel density,
such as o2, f l1, and f l2, are best discriminated with pc2, whereas
mutants influencing weight and total density, such as sh2, bt2,
bt1, and su1, are separated with a combination of pc1 and pc2.18

Kernel weight and volume show similar correlations with pc1,
pc3, and pc4 (Table 6). This is not surprising because kernel
weight and volume are highly covariant traits (Table 2).
However, the high correlation to pc1 supports the hypothesis
that kernel size influences the spectral path length,18 which
would account for most of the variation in the amount of
reflected light received by the spectrometer. It is important to
note that the spectral information about the relative composition
of protein, starch, and oil is found in pc3 through pc11, which
explain much smaller amounts of spectral variation than pc1 and
pc2. Although starch, protein, and oil are correlated to pc3, these
seed storage molecules have distinct relationships to the other
components of the NIR spectra.
Single-Kernel Density Correlation with Test Weight.

Test weight is an indirect measure of corn density quantified in
mass per unit volume (lb/bushel), which is of primary interest for
commodity corn production. Prior studies found bulk kernel
density was correlated with test weight.10,39 To test this
relationship using individual kernels, NIR profiles were collected
from 40 kernels from 30 elite hybrid lines, and mean predicted
density values were compared with corresponding test weight
data. Predicted density was strongly correlated with test weight
(Figure 7). This regression suggests that for every 0.05 g/cm3

increase in kernel material density, the weight of one bushel
increases by 5 lb. The mean material density for the hybrid lines
was 1.45 g/cm3, which was lower than the mean material density
of the calibration population. Test weight, however, had no
relationship with kernel weight or volume, which was consistent
with prior studies.8,13,39 The strong relationship between kernel
density and test weight and the relatively low material density of
many of the hybrid lines suggest breeding efforts to increase
kernel density would have positive impacts on agronomic quality.

This study demonstrates that the μCT scanner can accurately
and precisely measure the density and volume of individual maize
kernels. The high resolution of 3D reconstructions provides
insight into how grain-fill and protein content positively
influence kernel material density, although there may be an
optimal kernel size for maximum density. We also found that the
embryo has relatively little impact on overall kernel density. Data
collection and analysis for μCT are slow and expose kernels to
radiation damage, making it impractical as a method to screen
and select for increased kernel density. However, density and
volume can be predicted with a high-throughput single-kernel
NIR grain analyzer. These prediction models are stable over
extended time with diverse germplasm. Importantly, single-
kernel density is directly related to hybrid field test weight. This
relationship was significant even though the hybrid kernels had
been equilibrated to approximately 10% moisture prior to NIR
data collection. Our results predict that selections for increased
density would improve test weight through breeding, and these
selections can be made at a single-kernel level.
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